ORD_Buckeye
Wrong glass, Sir.
The 2023 Nobel Prize in physics has been awarded to a team of scientists who created a ground-breaking technique using lasers to understand the extremely rapid movements of electrons, which were previously thought impossible to follow.
Pierre Agostini, Ferenc Krausz and Anne L’Huillier “demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy,” the Nobel committee said when the prize was announced in Stockholm on Tuesday.
It praised the laureates for giving “humanity new tools for exploring the world of electrons inside atoms and molecules.”
The three winners used precision lasers to generate ultra-short bursts of light. L’Huillier, a professor at Lund University in Sweden, discovered a new effect from a laser light’s interaction with atoms in a gas. Agostini, a professor at Ohio State University, and Krausz, a professor at the Max Planck Institute of Quantum Optics in Germany, then demonstrated that this effect can be used to create shorter pulses of light than were previously possible.
Pierre Agostini, Ferenc Krausz and Anne L’Huillier “demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy,” the Nobel committee said when the prize was announced in Stockholm on Tuesday.
It praised the laureates for giving “humanity new tools for exploring the world of electrons inside atoms and molecules.”
The three winners used precision lasers to generate ultra-short bursts of light. L’Huillier, a professor at Lund University in Sweden, discovered a new effect from a laser light’s interaction with atoms in a gas. Agostini, a professor at Ohio State University, and Krausz, a professor at the Max Planck Institute of Quantum Optics in Germany, then demonstrated that this effect can be used to create shorter pulses of light than were previously possible.
Last edited: